{ "id": "2004.14506", "version": "v1", "published": "2020-04-29T22:29:32.000Z", "updated": "2020-04-29T22:29:32.000Z", "title": "Kernel of Trace Operator of Sobolev Spaces on Lipschitz Domain", "authors": [ "I-Shing Hu" ], "categories": [ "math.AP", "math.FA" ], "abstract": "We are going to show that \\[ \\overline{C_0^\\infty \\left(D\\right)} = \\overline{C_c^\\infty \\left(D\\right)} \\] in $W^{1,p}\\left(D\\right)$, $p\\in[1,\\infty)$, on Lipschitz domain $D$ by showing both sides are kernel of trace operator \\[ T:\\,W^{1,p}(D)\\rightarrow L^{p}(\\partial D). \\] In Grisvard's book \\cite{key-1}, Corollary 1.5.1.6 states a much more general result which covers above. But we cannot find a complete proof in literature. Fortunately, we apply some change of variables formulas from Evans and Gariepy's book (Theorem 3.9 and 3.11, \\cite{key-3}), for Lipschitz coordinate transformation, in to improve the proof of \\[ \\overline{C_0^\\infty \\left(D\\right)} = \\overline{C_c^\\infty \\left(D\\right)} \\] in $W^{1,p}\\left(D\\right)$, $p\\in[1,\\infty)$, from $\\mathcal{C}^{1}$ (Theorem 2 in {\\S}5.5 of Evans' book \\cite{key-2}) to Lipschitz domain.", "revisions": [ { "version": "v1", "updated": "2020-04-29T22:29:32.000Z" } ], "analyses": { "subjects": [ "46E35" ], "keywords": [ "lipschitz domain", "trace operator", "sobolev spaces", "lipschitz coordinate transformation", "complete proof" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }