{ "id": "2004.14434", "version": "v1", "published": "2020-04-29T18:53:46.000Z", "updated": "2020-04-29T18:53:46.000Z", "title": "The atomic Hardy space for a general Bessel operator", "authors": [ "Edyta Kania-Strojec" ], "comment": "25 pages, 2 figures", "categories": [ "math.FA" ], "abstract": "We study Hardy spaces associated with a general multidimensional Bessel operator $\\mathbb{B}_\\nu$. This operator depends on a multiparameter of type $\\nu$ that is usually restricted to a product of half-lines. Here we deal with the Bessel operator in the general context, with no restrictions on the type parameter. We define the Hardy space $H^1$ for $\\mathbb{B}_\\nu$ in terms of the maximal operator of the semigroup of operators $\\exp(-t\\mathbb{B}_\\nu)$. Then we prove that, in general, $H^1$ admits an atomic decomposition of local type.", "revisions": [ { "version": "v1", "updated": "2020-04-29T18:53:46.000Z" } ], "analyses": { "subjects": [ "42B30", "42B25", "47D03" ], "keywords": [ "atomic hardy space", "general bessel operator", "general multidimensional bessel operator", "study hardy spaces", "type parameter" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }