{ "id": "2004.14310", "version": "v1", "published": "2020-04-29T16:31:07.000Z", "updated": "2020-04-29T16:31:07.000Z", "title": "Normal functionals on Lipschitz spaces are weak$^\\ast$ continuous", "authors": [ "Ramón J. Aliaga", "Eva Pernecká" ], "comment": "7 pages", "categories": [ "math.FA" ], "abstract": "Let $\\operatorname{Lip}_0(M)$ be the space of Lipschitz functions on a complete metric space $M$ that vanish at a base point. We show that every normal functional in $\\operatorname{Lip}_0(M)^\\ast$ is weak$^*$ continuous, answering a question by N. Weaver.", "revisions": [ { "version": "v1", "updated": "2020-04-29T16:31:07.000Z" } ], "analyses": { "subjects": [ "46B20", "46E15" ], "keywords": [ "normal functional", "lipschitz spaces", "complete metric space", "continuous" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }