{ "id": "2004.14007", "version": "v1", "published": "2020-04-29T08:08:03.000Z", "updated": "2020-04-29T08:08:03.000Z", "title": "Quelques Éléments de Combinatoire des Matrices de $SL_2(\\mathbb{Z})$", "authors": [ "Flavien Mabilat" ], "categories": [ "math.CO" ], "abstract": "A Theorem of V.Ovsienko characterizes sequences of positive integers $(a_{1},a_{2},\\ldots,a_{n})$ such that the $(2\\times2)$-matrix $\\begin{pmatrix} a_{n} & -1 \\\\ 1 & 0 \\end{pmatrix}\\cdots \\begin{pmatrix} a_{1} & -1 \\\\ 1 & 0 \\end{pmatrix}$ is equal to $\\pm Id$. In this paper, we study matrices $M$ such that some properties verified by the previous equation are still true when we replace $\\pm Id$ by $\\pm M$. We also give a combinatorial description of the solutions of this equation when $M=\\begin{pmatrix} 0 & -1 \\\\ 1 & 0 \\end{pmatrix}$ in terms of dissections of convex polygons.", "revisions": [ { "version": "v1", "updated": "2020-04-29T08:08:03.000Z" } ], "analyses": { "keywords": [ "combinatoire", "ovsienko characterizes sequences", "study matrices", "combinatorial description", "convex polygons" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }