{ "id": "2004.13440", "version": "v1", "published": "2020-04-28T11:47:38.000Z", "updated": "2020-04-28T11:47:38.000Z", "title": "Asymptotics of product of nonnegative 2-by-2 matrices and maximum of a (2,1) random walk with asymptotically zero drift", "authors": [ "Hongyan SUN", "Hua-Ming WANG" ], "comment": "18 pages", "categories": [ "math.PR", "math.RA" ], "abstract": "Consider matrix product $A_kA_{k-1}\\cdots A_1$ with $A_n,n\\ge1$ some nonnegative 2-by-2 matrices. Under certain condition, we show that $\\forall i,j= 1,2,$ $(A_kA_{k-1}\\cdots A_1)_{i,j}\\sim c\\varrho(A_k)\\varrho(A_{k-1})\\cdots \\varrho(A_1)$ as $k\\rightarrow\\infty$ with $\\varrho(A_n)$ the spectral radius of $A_n$ and $0