{ "id": "2004.12976", "version": "v1", "published": "2020-04-27T17:42:27.000Z", "updated": "2020-04-27T17:42:27.000Z", "title": "Erdős space in Julia sets", "authors": [ "David Sumner Lipham" ], "comment": "6 pages", "categories": [ "math.DS", "math.GN" ], "abstract": "Let $\\dot E_{\\text{Im}}$ be set of endpoints of the Julia set of $\\exp(z)-1$ whose forward orbits escape to infinity in the imaginary direction. We prove $\\dot E_{\\text{Im}}$ is homeomorphic to Erd\\H{o}s space $\\mathfrak E:=\\{x\\in \\ell^2:x_n\\in \\mathbb Q\\text{ for all }n<\\omega\\}.$ This result extends to all complex exponential functions $\\exp(z)+a$ which have attracting or parabolic periodic orbits.", "revisions": [ { "version": "v1", "updated": "2020-04-27T17:42:27.000Z" } ], "analyses": { "subjects": [ "37F10", "30D05", "54F45" ], "keywords": [ "julia set", "erdős space", "parabolic periodic orbits", "complex exponential functions", "forward orbits escape" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }