{ "id": "2004.12090", "version": "v1", "published": "2020-04-25T08:53:18.000Z", "updated": "2020-04-25T08:53:18.000Z", "title": "On the Chow ring of Fano varieties of type $S6$", "authors": [ "Robert Laterveer" ], "comment": "12 pages, comments still welcome !", "journal": "Serdica Math. J. 45 (2019), 289--304", "categories": [ "math.AG" ], "abstract": "Fatighenti and Mongardi have defined Fano varieties of type S6 as zero loci of a certain vector bundle on the Grassmannian $\\hbox{Gr}(2,10)$. These varieties have 3 Hodge structures of K3 type in their cohomology. We show that the Chow ring of these varieties also displays \"K3 type\" behaviour.", "revisions": [ { "version": "v1", "updated": "2020-04-25T08:53:18.000Z" } ], "analyses": { "subjects": [ "14C15", "14C25" ], "keywords": [ "chow ring", "k3 type", "hodge structures", "defined fano varieties", "type s6" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }