{ "id": "2004.11708", "version": "v1", "published": "2020-04-24T12:47:09.000Z", "updated": "2020-04-24T12:47:09.000Z", "title": "The spectrum of the restriction to an invariant subspace", "authors": [ "Dimosthenis Drivaliaris", "Nikos Yannakakis" ], "journal": "Oper. Matrices 14 (2020) 261-264", "doi": "10.7153/oam-2020-14-19", "categories": [ "math.FA" ], "abstract": "Let $X$ be a Banach space, $A\\in B(X)$ and $M$ be an invariant subspace of $A$. We present an alternative proof that, if the spectrum of the restriction of $A$ to $M$ contains a point that is in any given hole in the spectrum of $A$, then the entire hole is in the spectrum of the restriction.", "revisions": [ { "version": "v1", "updated": "2020-04-24T12:47:09.000Z" } ], "analyses": { "subjects": [ "47A10", "47A15" ], "keywords": [ "invariant subspace", "restriction", "banach space" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }