{ "id": "2004.11447", "version": "v1", "published": "2020-04-23T20:16:09.000Z", "updated": "2020-04-23T20:16:09.000Z", "title": "The strong geometric lemma for intrinsic Lipschitz graphs in Heisenberg groups", "authors": [ "Vasileios Chousionis", "Sean Li", "Robert Young" ], "categories": [ "math.MG", "math.CA" ], "abstract": "We show that the $\\beta$--numbers of intrinsic Lipschitz graphs of Heisenberg groups $\\mathbb{H}_n$ are locally Carleson integrable when $n \\geq 2$. Our technique relies on a recent Dorronsoro inequality \\cite{FO} as well as a novel slicing argument. A key ingredient in our proof is a Euclidean inequality bounding the $\\beta$--number of a function on a cube of $\\mathbb{R}^n$ using the $\\beta$--number of the restriction of the function to codimension--1 slices of the cube.", "revisions": [ { "version": "v1", "updated": "2020-04-23T20:16:09.000Z" } ], "analyses": { "keywords": [ "intrinsic lipschitz graphs", "strong geometric lemma", "heisenberg groups", "technique relies", "euclidean inequality" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }