{ "id": "2004.10460", "version": "v1", "published": "2020-04-22T09:26:29.000Z", "updated": "2020-04-22T09:26:29.000Z", "title": "Approximate controllability of a non-autonomus evolution equation in Banach spaces", "authors": [ "K. Ravikumar", "M. T. Mohan", "A. Anguraj" ], "categories": [ "math.OC" ], "abstract": "In this paper, we consider a non-autonomus nonlinear evolution equation in separable, reflexive Banach spaces. First, we consider a linear problem and establish the approximate controllability results by finding a feedback control with the help of an optimal control problem. We then establish the approximate controllability results for a semilinear differential equation in Banach spaces using the theory of linear evolution systems, properties of resolvent operator and Schauder's fixed point theorem. Finally, we provide an example of a non-autonomous, nonlinear diffusion equation in Banach spaces to validate the results we obtained.", "revisions": [ { "version": "v1", "updated": "2020-04-22T09:26:29.000Z" } ], "analyses": { "subjects": [ "34K06", "34A12", "37L05", "93B05" ], "keywords": [ "banach spaces", "non-autonomus evolution equation", "approximate controllability results", "non-autonomus nonlinear evolution equation", "optimal control problem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }