{ "id": "2004.10357", "version": "v1", "published": "2020-04-22T01:18:58.000Z", "updated": "2020-04-22T01:18:58.000Z", "title": "Local-Global Principle for Unitary Groups Over Function Fields of p-adic Curves", "authors": [ "R. Parimala", "V. Suresh" ], "categories": [ "math.NT", "math.AG", "math.RA" ], "abstract": "Let K be a p-adic field and F the function field of a curve over K. Let G be a connected linear algebraic group over F of classical type. Suppose the prime p is a good prime for G. Then we prove that projective homogeneous spaces under G over F satisfy a local global principle for rational points with respect to discrete valuations of F . If G is a semisimple simply connected group over F , then we also prove that principal homogeneous spaces under G over F satisfy a local global principle for rational points with respect to discrete valuations of F.", "revisions": [ { "version": "v1", "updated": "2020-04-22T01:18:58.000Z" } ], "analyses": { "keywords": [ "function field", "local-global principle", "p-adic curves", "unitary groups", "local global principle" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }