{ "id": "2004.10273", "version": "v1", "published": "2020-04-21T20:10:06.000Z", "updated": "2020-04-21T20:10:06.000Z", "title": "Primes in numerical semigroups", "authors": [ "Jorge L. Ramirez Alfonsin", "Mariusz Skalba" ], "categories": [ "math.NT", "math.CO" ], "abstract": "Let 0 < a < b be two relatively prime integers and let be the numerical semigroup generated by a and b with Frobenius number g(a,b)=ab-a-b. In this note, we prove that there exists a prime number p in with p < g(a,b) when the product ab is sufficiently large. Two related conjectures are posed and discussed as well.", "revisions": [ { "version": "v1", "updated": "2020-04-21T20:10:06.000Z" } ], "analyses": { "subjects": [ "11D07", "11N13", "11A41" ], "keywords": [ "numerical semigroup", "frobenius number", "prime number", "product ab" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }