{
"id": "2004.10273",
"version": "v1",
"published": "2020-04-21T20:10:06.000Z",
"updated": "2020-04-21T20:10:06.000Z",
"title": "Primes in numerical semigroups",
"authors": [
"Jorge L. Ramirez Alfonsin",
"Mariusz Skalba"
],
"categories": [
"math.NT",
"math.CO"
],
"abstract": "Let 0 < a < b be two relatively prime integers and let be the numerical semigroup generated by a and b with Frobenius number g(a,b)=ab-a-b. In this note, we prove that there exists a prime number p in with p < g(a,b) when the product ab is sufficiently large. Two related conjectures are posed and discussed as well.",
"revisions": [
{
"version": "v1",
"updated": "2020-04-21T20:10:06.000Z"
}
],
"analyses": {
"subjects": [
"11D07",
"11N13",
"11A41"
],
"keywords": [
"numerical semigroup",
"frobenius number",
"prime number",
"product ab"
],
"note": {
"typesetting": "TeX",
"pages": 0,
"language": "en",
"license": "arXiv",
"status": "editable"
}
}
}