{ "id": "2004.10038", "version": "v1", "published": "2020-04-21T14:20:54.000Z", "updated": "2020-04-21T14:20:54.000Z", "title": "On the spectral gap and the diameter of Cayley graphs", "authors": [ "Ilya D. Shkredov" ], "comment": "22 pages", "categories": [ "math.CO", "math.NT" ], "abstract": "We obtain a new bound connecting the first non--trivial eigenvalue of the Laplace operator of a graph and the diameter of the graph, which is effective for graphs with small diameter or for graphs, having the number of maximal paths comparable to the expectation.", "revisions": [ { "version": "v1", "updated": "2020-04-21T14:20:54.000Z" } ], "analyses": { "keywords": [ "cayley graphs", "spectral gap", "first non-trivial eigenvalue", "laplace operator", "small diameter" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }