{ "id": "2004.09137", "version": "v1", "published": "2020-04-20T09:00:36.000Z", "updated": "2020-04-20T09:00:36.000Z", "title": "Invariant graphs and spectral type of Schrödinger operators", "authors": [ "Artur Avila", "Konstantin Khanin", "Martin Leguil" ], "comment": "20 pages", "categories": [ "math.DS", "math.SP" ], "abstract": "In this paper we study spectral properties of Schr\\\"odinger operators with quasi-periodic potentials related to quasi-periodic action minimizing trajectories for analytic twist maps. We prove that the spectrum contains a component of absolutely continuous spectrum provided that the corresponding trajectory of the twist map belongs to an analytic invariant curve.", "revisions": [ { "version": "v1", "updated": "2020-04-20T09:00:36.000Z" } ], "analyses": { "subjects": [ "37J50" ], "keywords": [ "spectral type", "invariant graphs", "schrödinger operators", "analytic invariant curve", "study spectral properties" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }