{ "id": "2004.08860", "version": "v1", "published": "2020-04-19T14:18:15.000Z", "updated": "2020-04-19T14:18:15.000Z", "title": "On representations of $\\mathrm{Gal}(\\overline{\\mathbb{Q}}/\\mathbb{Q})$ and $\\mathrm{Aut}(\\hat{F}_d)$", "authors": [ "Frauke M. Bleher", "Ted Chinburg", "Alexander Lubotzky" ], "comment": "16 pages", "categories": [ "math.NT", "math.GR" ], "abstract": "It is well known that $G=\\mathrm{Gal}(\\overline{\\mathbb{Q}}/\\mathbb{Q})$, the absolute Galois group of the field of rational numbers $\\mathbb{Q}$, is embedded as an (infinite index) subgroup in $A=\\mathrm{Aut}(\\hat{F}_2)$, the automorphism group of the free profinite group on 2 generators $\\hat{F}_2$. In this note, we prove a \"super-rigidity\" result for some classical Galois representations of $G$. Namely, let $X$ be a smooth projective irreducible curve over $\\overline{\\mathbb{Q}}$, realized as a cover $\\lambda:X\\to \\mathbb{P}^1_{\\overline{\\mathbb{Q}}}$ that is unramified outside $\\{0,1,\\infty\\}$, and let $\\ell$ is a prime number. Then the action of a natural finite index subgroup of $G$ on the $\\ell$-adic Tate module of the generalized Jacobian of $X$ with respect to the ramification locus of $\\lambda$, can be extended, up to a finite index subgroup, to an action of a finite index subgroup of $A$. Moreover, this holds even for the product of the Tate modules of the generalized Jacobian of $X$ over all primes $\\ell$.", "revisions": [ { "version": "v1", "updated": "2020-04-19T14:18:15.000Z" } ], "analyses": { "subjects": [ "14G32", "20F34", "14H30" ], "keywords": [ "natural finite index subgroup", "absolute galois group", "free profinite group", "adic tate module", "generalized jacobian" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }