{ "id": "2004.08760", "version": "v1", "published": "2020-04-19T03:41:03.000Z", "updated": "2020-04-19T03:41:03.000Z", "title": "Maximal almost disjoint families and pseudocompactness of hyperspaces", "authors": [ "Osvaldo Guzmán", "Michael Hrušák", "Vinicius de Oliveira Rodrigues", "Stevo Todorčević", "Artur Hideyuki Tomita" ], "categories": [ "math.GN" ], "abstract": "We show that all maximal almost disjoint families have pseudocompact Vietoris hyperspace if and only if $\\mathsf{MA}_\\mathfrak c (\\mathcal P(\\omega)/\\mathrm{fin})$ holds. We further study the question whether there is a maximal almost disjoint family whose hyperspace is pseudocompact and prove that consistently such families do not exist \\emph{genericaly}, by constructing a consistent example of a maximal almost disjoint family $\\mathcal A$ of size less than $\\mathfrak c$ whose hyperspace is not pseudocompact.", "revisions": [ { "version": "v1", "updated": "2020-04-19T03:41:03.000Z" } ], "analyses": { "subjects": [ "54D20", "03E35", "54D35", "03E17" ], "keywords": [ "disjoint family", "pseudocompactness", "pseudocompact vietoris hyperspace", "consistent example" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }