{ "id": "2004.08677", "version": "v1", "published": "2020-04-18T17:59:31.000Z", "updated": "2020-04-18T17:59:31.000Z", "title": "Bivectorial Mesoscopic Nonequilibrium Thermodynamics: Landauer-Bennett-Hill Principle, Cycle Affinity and Vorticity Potential", "authors": [ "Ying-Jen Yang", "Hong Qian" ], "categories": [ "cond-mat.stat-mech" ], "abstract": "In mesoscopic nonequilibrium thermodynamics (NET), Landauer-Bennett-Hill principle emphasizes the importance of kinetic cycles. For continuous stochastic systems, a NET in phase space is formulated in terms of cycle affinity $\\nabla\\wedge\\big(\\mathbf{D}^{-1}\\mathbf{b}\\big)$ and vorticity $\\mathbf{A}(\\mathbf{x})$ representing the stationary flux $\\mathbf{J}^{*}=\\nabla\\times\\mathbf{A}$. Each bivectorial cycle couples two transport processes represented by vectors and gives rise to Onsager's reciprocality; the scalar product of the two bivectors $\\mathbf{A}\\cdot\\nabla\\wedge\\big(\\mathbf{D}^{-1}\\mathbf{b}\\big)$ is the rate of local entropy production in the nonequilibrium steady state. An Onsager operator that maps vorticity to cycle affinity is introduced.", "revisions": [ { "version": "v1", "updated": "2020-04-18T17:59:31.000Z" } ], "analyses": { "keywords": [ "bivectorial mesoscopic nonequilibrium thermodynamics", "cycle affinity", "vorticity potential", "nonequilibrium steady state", "local entropy production" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }