{ "id": "2004.08486", "version": "v1", "published": "2020-04-17T23:24:00.000Z", "updated": "2020-04-17T23:24:00.000Z", "title": "Critical exponent for semi-linear structurally damped wave equation of derivative type", "authors": [ "Tuan Anh Dao", "Ahmad Z. Fino" ], "comment": "8 pages", "categories": [ "math.AP" ], "abstract": "Main purpose of this paper is to study the following semi-linear structurally damped wave equation with nonlinearity of derivative type: $$u_{tt}- \\Delta u+ \\mu(-\\Delta)^{\\sigma/2} u_t= |u_t|^p,\\quad u(0,x)= u_0(x),\\quad u_t(0,x)=u_1(x),$$ with $\\mu>0$, $n\\geq1$, $\\sigma \\in (0,2]$ and $p>1$. In particular, we are going to prove the non-existence of global weak solutions by using a new test function and suitable sign assumptions on the initial data in both the subcritical case and the critical case.", "revisions": [ { "version": "v1", "updated": "2020-04-17T23:24:00.000Z" } ], "analyses": { "subjects": [ "35B44", "35L76", "35L71", "35A01" ], "keywords": [ "semi-linear structurally damped wave equation", "derivative type", "critical exponent", "global weak solutions", "main purpose" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }