{ "id": "2004.07622", "version": "v1", "published": "2020-04-16T12:21:50.000Z", "updated": "2020-04-16T12:21:50.000Z", "title": "Ergodic properties of convolution operators", "authors": [ "Jorge Galindo", "Enrique Jordá" ], "categories": [ "math.FA" ], "abstract": "Let $G$ be a locally compact group and $\\mu$ be a measure on $G$. In this paper we find conditions for the convolution operators $\\lambda_p(\\mu)$, defined on $L^p(G)$ and given by convolution by $\\mu$, to be mean ergodic and uniformly mean ergodic. The ergodic properties of the operators $\\lambda_p(\\mu)$ are related to the ergodic properties of the measure $\\mu$ as well.", "revisions": [ { "version": "v1", "updated": "2020-04-16T12:21:50.000Z" } ], "analyses": { "subjects": [ "43A05", "43A15", "43A20", "46H99", "47A35" ], "keywords": [ "ergodic properties", "convolution operators", "locally compact group", "uniformly mean ergodic" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }