{ "id": "2004.07101", "version": "v1", "published": "2020-04-15T14:11:26.000Z", "updated": "2020-04-15T14:11:26.000Z", "title": "Transcendental Numbers and the Lambert-Tsallis Function", "authors": [ "J. L. E. da Silva", "R. V. Ramos" ], "categories": [ "math.NT" ], "abstract": "To decide upon the arithmetic nature of some numbers may be a non-trivial problem. Some cases are well know, for example exp(1) and W(1), where W is the Lambert function, are transcendental numbers. The Tsallis q-exponential, e_q (z), and the Lambert-Tsallis W_q (z) function, where q is a real parameter, are, respectively, generalizations of the exponential and Lambert functions. In the present work we use the Gelfond-Schneider theorem in order to show the arithmetic conditions on q and z such that W_q (z) and exp_q (z) are transcendental.", "revisions": [ { "version": "v1", "updated": "2020-04-15T14:11:26.000Z" } ], "analyses": { "keywords": [ "transcendental numbers", "lambert-tsallis function", "lambert function", "arithmetic nature", "gelfond-schneider theorem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }