{ "id": "2004.06852", "version": "v1", "published": "2020-04-15T01:43:05.000Z", "updated": "2020-04-15T01:43:05.000Z", "title": "On a Generalization of Strongly $η$-Convex Functions via Fractal Sets", "authors": [ "Zaroni Robles", "José Sanabria", "Rainier Sánchez" ], "categories": [ "math.FA" ], "abstract": "The purpose of this paper is to study a generalization of strongly $\\eta$-convex functions using the fractal calculus developed by Yang \\cite{Yang}, namely generalized strongly $\\eta$-convex function. Among other results, we obtain some Hermite-Hadamard and Fej\\'er type inequalities for this class of functions.", "revisions": [ { "version": "v1", "updated": "2020-04-15T01:43:05.000Z" } ], "analyses": { "subjects": [ "26D07", "26D15", "26A51", "39B62" ], "keywords": [ "convex function", "fractal sets", "generalization", "fejer type inequalities", "fractal calculus" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }