{ "id": "2004.06671", "version": "v1", "published": "2020-04-14T17:18:21.000Z", "updated": "2020-04-14T17:18:21.000Z", "title": "On the Stability of Fourier Phase Retrieval", "authors": [ "Stefan Steinerberger" ], "categories": [ "math.FA", "math.CA" ], "abstract": "Phase retrieval is concerned with recovering a function $f$ from the absolute value of its Fourier transform $|\\widehat{f}|$. We study the stability properties of this problem in $L^p(\\mathbb{R}^n) \\cap L^2(\\mathbb{R}^n)$ for $1 \\leq p < 2$. The simplest result is as follows: if $f \\in L^1(\\mathbb{R}^n) \\cap L^2(\\mathbb{R}^n)$ has a real-valued Fourier transform supported on a set of measure $L < \\infty$, then for all all $g \\in L^1(\\mathbb{R}^n) \\cap L^2(\\mathbb{R}^n)$ $$ \\| f-g\\|_{L^2} \\leq 2\\cdot \\| |\\widehat{f}| - |\\widehat{g}| \\|_{L^2} + 30\\sqrt{ L} \\cdot \\|f-g\\|_{L^1}+ 2\\| \\Im \\widehat{g} \\|_{L^2}.$$ This is a form of stability of the phase retrieval problem for band-limited functions (up to the translation symmetry captured by the last term). The inequality follows from a general result for $f,g \\in L^p(\\mathbb{R}^n) \\cap L^2(\\mathbb{R}^n)$.", "revisions": [ { "version": "v1", "updated": "2020-04-14T17:18:21.000Z" } ], "analyses": { "keywords": [ "fourier phase retrieval", "phase retrieval problem", "absolute value", "general result", "stability properties" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }