{ "id": "2004.06221", "version": "v1", "published": "2020-04-13T22:14:47.000Z", "updated": "2020-04-13T22:14:47.000Z", "title": "Some elliptic problems involving the gradient on general bounded and exterior domains", "authors": [ "A. Aghajani", "C. Cowan" ], "categories": [ "math.AP" ], "abstract": "In this article we consider the existence of positive singular solutions on bounded domains and also classical solutions on exterior domains. First we consider positive singular solutions of the following problems: \\begin{equation} \\label{eq_abst_1}-\\Delta u = (1+g(x)) | \\nabla u|^p \\qquad \\mbox{ in } B_1, \\qquad u = 0 \\mbox{ on } \\;\\; \\partial B_1, \\qquad \\mbox{ and} \\end{equation} \\begin{equation} \\label{eq_abst_2} -\\Delta u = | \\nabla u|^p \\qquad \\mbox{ in } \\Omega, \\qquad u = 0 \\mbox{ on } \\;\\; \\partial \\Omega. \\end{equation} In the first problem $B_1$ is the unit ball in $ \\mathbb{R}^N$ and in the second $\\Omega$ is a bounded smooth domain in $ \\mathbb{R}^N$. In both cases we assume $ N \\ge 3$, $ \\frac{N}{N-1}
\\frac{N}{N-1}$. We prove the existence of a bounded positive classical solution with the additional property that $ \\nabla u(x) \\cdot x>0$ for large $|x|$.", "revisions": [ { "version": "v1", "updated": "2020-04-13T22:14:47.000Z" } ], "analyses": { "keywords": [ "exterior domain", "positive singular solutions", "elliptic problems", "first problem", "classical solution" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }