{ "id": "2004.04599", "version": "v1", "published": "2020-04-09T15:37:25.000Z", "updated": "2020-04-09T15:37:25.000Z", "title": "Combinatorial Hopf algebras from representations of families of wreath products", "authors": [ "Tyrone Crisp", "Caleb Kennedy Hill" ], "comment": "26 pages", "categories": [ "math.RT", "math.CO" ], "abstract": "We construct Hopf algebras whose elements are representations of combinatorial automorphism groups, by generalising a theorem of Zelevinsky on Hopf algebras of representations of wreath products. As an application we attach symmetric functions to representations of graph automorphism groups, generalising and refining Stanley's chromatic symmetric function.", "revisions": [ { "version": "v1", "updated": "2020-04-09T15:37:25.000Z" } ], "analyses": { "keywords": [ "combinatorial hopf algebras", "wreath products", "representations", "refining stanleys chromatic symmetric function", "combinatorial automorphism groups" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }