{ "id": "2004.03095", "version": "v1", "published": "2020-04-07T02:58:12.000Z", "updated": "2020-04-07T02:58:12.000Z", "title": "Iwasawa Decomposition for Lie Superalgebras", "authors": [ "Alexander Sherman" ], "comment": "18 pages; comments welcome", "categories": [ "math.RT" ], "abstract": "Let $\\mathfrak{g}$ be a basic simple Lie superalgebra over an algebraically closed field of characteristic zero, and $\\theta$ an involution of $\\mathfrak{g}$ preserving a nondegenerate invariant form. We prove that either $\\theta$ or $\\delta\\circ\\theta$ admits an Iwasawa decomposition, where $\\delta$ is the canonical grading automorphism $\\delta(x)=(-1)^{\\overline{x}}x$. The proof uses the notion of generalized root systems as developed by Serganova, and follows from a more general result on centralizers of certain tori coming from semisimple automorphisms of the Lie superalgebra $\\mathfrak{g}$.", "revisions": [ { "version": "v1", "updated": "2020-04-07T02:58:12.000Z" } ], "analyses": { "keywords": [ "iwasawa decomposition", "basic simple lie superalgebra", "nondegenerate invariant form", "semisimple automorphisms", "general result" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }