{ "id": "2004.02776", "version": "v1", "published": "2020-04-06T16:07:43.000Z", "updated": "2020-04-06T16:07:43.000Z", "title": "Existence and multiplicity of positive solutions for the fractional Laplacian under subcritical or critical growth", "authors": [ "Silvia Frassu", "Antonio Iannizzotto" ], "comment": "15 pages", "categories": [ "math.AP" ], "abstract": "We study a Dirichlet type problem for an equation involving the fractional Laplacian and a reaction term subject to either subcritical or critical growth conditions, depending on a positive parameter. Applying a critical point result of Bonanno, we prove existence of one or two positive solutions as soon as the parameter lies under a (explicitly determined) threshold. As an application, we find two positive solutions for a fractional Brezis-Nirenberg problem.", "revisions": [ { "version": "v1", "updated": "2020-04-06T16:07:43.000Z" } ], "analyses": { "subjects": [ "35R11", "35S15", "35A15" ], "keywords": [ "positive solutions", "fractional laplacian", "critical growth", "multiplicity", "fractional brezis-nirenberg problem" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }