{ "id": "2004.02588", "version": "v1", "published": "2020-03-23T06:06:55.000Z", "updated": "2020-03-23T06:06:55.000Z", "title": "On the use of the Riesz transforms to determine the pressure term in the incompressible Navier-Stokes equations on the whole space", "authors": [ "Borys Álvarez-Samaniego", "Wilson P. Álvarez-Samaniego", "Pedro G. Fernández-Dalgo" ], "comment": "12 pages", "categories": [ "math.AP" ], "abstract": "We give some conditions under which the pressure term in the incompressible Navier-Stokes equations on the entire $d$-dimensional Euclidean space is determined by the formula $\\displaystyle \\nabla p = \\nabla \\left(\\sum_{i,j=1}^d \\mathcal{R}_i \\mathcal{R}_j (u_i u_j - F_{i,j}) \\right)$, where $d \\in \\{2, 3\\}$, ${\\textbf{u}} := (u_1, \\ldots, u_d)$ is the fluid velocity, $\\mathbb{F}:= (F_{i,j})_{1\\le i,j\\le d}$ is the forcing tensor, and for all $k \\in \\{1, \\ldots, d\\}$, $\\mathcal{R}_k$ is the $k$-th Riesz transform.", "revisions": [ { "version": "v1", "updated": "2020-03-23T06:06:55.000Z" } ], "analyses": { "subjects": [ "35Q30", "76D05" ], "keywords": [ "incompressible navier-stokes equations", "pressure term", "dimensional euclidean space", "th riesz transform", "fluid velocity" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }