{ "id": "2004.02078", "version": "v1", "published": "2020-04-05T02:49:51.000Z", "updated": "2020-04-05T02:49:51.000Z", "title": "Global Behaviors of weak KAM Solutions for exact symplectic Twist Maps", "authors": [ "Jianlu Zhang" ], "comment": "19 pages,1 figure", "categories": [ "math.DS" ], "abstract": "We investigated several global behaviors of the weak KAM solutions $u_c(x,t)$ parametrized by $c\\in H^1(\\mathbb T,\\mathbb R)$. For the suspended Hamiltonian $H(x,p,t)$ of the exact symplectic twist map, we could find a family of weak KAM solutions $u_c(x,t)$ parametrized by $c(\\sigma)\\in H^1(\\mathbb T,\\mathbb R)$ with $c(\\sigma)$ continuous and monotonic and \\[ \\partial_tu_c+H(x,\\partial_x u_c+c,t)=\\alpha(c),\\quad \\text{a.e.\\ } (x,t)\\in\\mathbb T^2, \\] such that sequence of weak KAM solutions $\\{u_c\\}_{c\\in H^1(\\mathbb T,\\mathbb R)}$ is $1/2-$H\\\"older continuity of parameter $\\sigma\\in \\mathbb{R}$. Moreover, for each generalized characteristic (no matter regular or singular) solving \\[ \\left\\{ \\begin{aligned} &\\dot{x}(s)\\in \\text{co} \\Big[\\partial_pH\\Big(x(s),c+D^+u_c\\big(x(s),s+t\\big),s+t\\Big)\\Big], & \\\\ &x(0)=x_0,\\quad (x_0,t)\\in\\mathbb T^2,& \\end{aligned} \\right. \\] we evaluate it by a uniquely identified rotational number $\\omega(c)\\in H_1(\\mathbb T,\\mathbb R)$. This property leads to a certain topological obstruction in the phase space and causes local transitive phenomenon of trajectories. Besides, we discussed this applies to high-dimensional cases.", "revisions": [ { "version": "v1", "updated": "2020-04-05T02:49:51.000Z" } ], "analyses": { "subjects": [ "37E40", "37E45", "37J40", "37J45", "37J50", "49L25" ], "keywords": [ "weak kam solutions", "exact symplectic twist map", "global behaviors", "matter regular", "uniquely identified rotational number" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }