{ "id": "2004.01884", "version": "v1", "published": "2020-04-04T07:37:45.000Z", "updated": "2020-04-04T07:37:45.000Z", "title": "$L$--functions and sum--free sets", "authors": [ "Tomasz Schoen", "Ilya D. Shkredov" ], "comment": "15 pages", "categories": [ "math.CO", "math.NT" ], "abstract": "For set $A\\subset {\\mathbb {F}_p}^*$ define by ${\\mathsf{sf}}(A)$ the size of the largest sum--free subset of $A.$ Alon and Kleitman showed that ${\\mathsf{sf}} (A) \\ge |A|/3+O(|A|/p).$ We prove that if ${\\mathsf{sf}} (A)-|A|/3$ is small then the set $A$ must be uniformly distributed on cosets of each large multiplicative subgroup. Our argument relies on irregularity of distribution of multiplicative subgroups on certain intervals in ${\\mathbb {F}_p}$.", "revisions": [ { "version": "v1", "updated": "2020-04-04T07:37:45.000Z" } ], "analyses": { "subjects": [ "11B13", "11B50", "11B75", "11M06" ], "keywords": [ "sum-free sets", "largest sum-free subset", "argument relies", "large multiplicative subgroup", "irregularity" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }