{ "id": "2004.01175", "version": "v1", "published": "2020-04-02T17:55:52.000Z", "updated": "2020-04-02T17:55:52.000Z", "title": "On the Clique Number of Paley Graphs of Prime Power Order", "authors": [ "Chi Hoi Yip" ], "comment": "15 pages", "categories": [ "math.CO", "math.NT" ], "abstract": "Finding a reasonably good upper bound for the clique number of Paley graph is an old and open problem in additive combinatorics. A recent breakthrough by Hanson and Petridis using Stepanov's method gives an improved upper bound on $\\mathbb{F}_p$, where $p \\equiv 1 \\pmod 4$. We extend their idea to the finite field $\\mathbb{F}_q$, where $q=p^{2s+1}$ for a prime $p\\equiv 1 \\pmod 4$ and a non-negative integer $s$. We show the clique number of the Paley graph over $\\mathbb{F}_{p^{2s+1}}$ is at most $\\min \\bigg(p^s \\bigg\\lceil \\sqrt{\\frac{p}{2}} \\bigg\\rceil, \\sqrt{\\frac{q}{2}} + \\frac{p^s+1}{4} + \\frac{\\sqrt{2p}}{32} p^{s-1}\\bigg)$.", "revisions": [ { "version": "v1", "updated": "2020-04-02T17:55:52.000Z" } ], "analyses": { "subjects": [ "11T06" ], "keywords": [ "clique number", "paley graph", "prime power order", "upper bound", "open problem" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }