{ "id": "2004.00424", "version": "v1", "published": "2020-03-29T20:57:57.000Z", "updated": "2020-03-29T20:57:57.000Z", "title": "Solving the inverse problem for an ordinary differential equation using conjugation", "authors": [ "Alfaro Vigo", "D. G", "Alvarez", "A. C", "Chapiro", "G.", "Garcia-Mokina", "G.", "Moreira", "C. G. T. A" ], "categories": [ "math.OC", "cs.NA", "math.DS", "math.NA", "nlin.CD" ], "abstract": "We consider the following inverse problem for an ordinary differential equations (ODE): given a set of data points $(t_i,x_i)$, $i=1,\\cdots,N$, find an ODE $x^\\prime(t) = v (x(t))$ that admits a solution $x(t)$ such that $x_i = x(t_i)$. To determine the field $v(x)$, we use the conjugate map defined by Schr\\\"{o}der equation and the solution of a related Julia equation. We also study existence, uniqueness, stability and other properties of this solution. Finally, we present several numerical methods for the approximation of the field $v(x)$ and provide some illustrative examples of the application of these methods.", "revisions": [ { "version": "v1", "updated": "2020-03-29T20:57:57.000Z" } ], "analyses": { "subjects": [ "65Y04", "G.1.2" ], "keywords": [ "ordinary differential equation", "inverse problem", "conjugation", "study existence", "data points" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }