{ "id": "2003.13598", "version": "v1", "published": "2020-03-30T16:29:01.000Z", "updated": "2020-03-30T16:29:01.000Z", "title": "Weakly norming graphs are edge-transitive", "authors": [ "Alexander Sidorenko" ], "comment": "4 pages", "categories": [ "math.CO" ], "abstract": "Let $\\mathcal{H}$ be the class of bounded measurable symmetric functions on $[0,1]^2$. For a function $h \\in \\mathcal{H}$ and a graph $G$ with vertex set $\\{v_1,\\ldots,v_n\\}$ and edge set $E(G)$, define \\[ t_G(h) \\; = \\; \\int \\cdots \\int \\prod_{\\{v_i,v_j\\} \\in E(G)} h(x_i,x_j) \\: dx_1 \\cdots dx_n \\: . \\] We prove that if $t_G(|h|)^{1/|E(G)|}$ is a norm on $\\mathcal{H}$, then $G$ is edge-transitive.", "revisions": [ { "version": "v1", "updated": "2020-03-30T16:29:01.000Z" } ], "analyses": { "keywords": [ "weakly norming graphs", "edge-transitive", "edge set", "vertex set" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }