{ "id": "2003.13437", "version": "v1", "published": "2020-03-30T13:02:19.000Z", "updated": "2020-03-30T13:02:19.000Z", "title": "Sobolev mappings and moduli inequalities on Carnot groups", "authors": [ "Evgenii Sevost'yanov", "Alexander Ukhlov" ], "comment": "14 pages", "categories": [ "math.AP" ], "abstract": "In the article we study mappings of Carnot groups satisfy moduli inequalities. We prove that homeomorphisms satisfy the moduli inequalities ($Q$-homeomor\\-phisms) with a locally integrable function $Q$ are Sobolev mappings. On this base in the frameworks of the weak inverse mapping theorem we prove that mappings inverse to Sobolev homeomorphisms of finite distortion of the class $W^1_{\\nu,\\loc}(\\Omega;\\Omega')$ belong to the Sobolev class $W^1_{1,\\loc}(\\Omega';\\Omega)$.", "revisions": [ { "version": "v1", "updated": "2020-03-30T13:02:19.000Z" } ], "analyses": { "subjects": [ "30C65", "22E30", "46E35" ], "keywords": [ "sobolev mappings", "carnot groups satisfy moduli inequalities", "weak inverse mapping theorem", "sobolev class", "homeomorphisms satisfy" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }