{ "id": "2003.13248", "version": "v1", "published": "2020-03-30T07:48:25.000Z", "updated": "2020-03-30T07:48:25.000Z", "title": "A Wild Local Shimura Correpsondence", "authors": [ "Edmund Karasiewicz" ], "categories": [ "math.NT", "math.RT" ], "abstract": "For the $n$-fold cover of a simply-laced simply-connected Chevalley group $G$ over a $p$-adic field $F$, where GCD$(n,p)=1$, Savin proved a correspondence between certain genuine representations of the $n$-fold cover of $G$ and the Iwahori-spherical representations of the group $G/Z_{n}$, where $Z_{n}$ is the $n$-torsion of the center of $G$. In this paper we prove the analogous result when $n=2$ and $F=\\mathbb{Q}_{2}$. In particular, GCD$(n,p)\\neq 1$.", "revisions": [ { "version": "v1", "updated": "2020-03-30T07:48:25.000Z" } ], "analyses": { "subjects": [ "11F70" ], "keywords": [ "wild local shimura correpsondence", "fold cover", "simply-laced simply-connected chevalley group", "adic field", "genuine representations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }