{ "id": "2003.13143", "version": "v1", "published": "2020-03-29T21:18:03.000Z", "updated": "2020-03-29T21:18:03.000Z", "title": "Asymptotic behavior of critical dissipative quasi-geostrophic equation in Fourier space", "authors": [ "Jamel Benameur", "Saber Ben Abdallah" ], "categories": [ "math.AP" ], "abstract": "In this paper we show the global existence for critical dissipative quasi-geostrophic equations if $\\|\\widehat{\\theta^0}\\|_{L^1}$ is small enough; among others we prove the analyticity of such a solution. If in addition the initial condition verifies $|D|^{-\\delta}\\theta^0\\in L^1(\\mathbb R^2)$ with $0<\\delta<1$, then the solution remains regular and $\\lim_{t\\rightarrow\\infty}t^\\delta\\|\\widehat{\\theta}(t)\\|_{L^1}=0$. Fourier analysis and standard techniques are used.", "revisions": [ { "version": "v1", "updated": "2020-03-29T21:18:03.000Z" } ], "analyses": { "keywords": [ "critical dissipative quasi-geostrophic equation", "asymptotic behavior", "fourier space", "initial condition verifies", "solution remains regular" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }