{ "id": "2003.12892", "version": "v1", "published": "2020-03-28T21:28:47.000Z", "updated": "2020-03-28T21:28:47.000Z", "title": "Inexistence of sublinear diffusion for a class of torus homeomorphisms", "authors": [ "Guilherme Silva Salomão", "Fabio Armando Tal" ], "categories": [ "math.DS" ], "abstract": "We prove that, if $f$ is a homeomorphism of the two torus isotopic to the identity whose rotation set is a non-degenerate segment and $f$ has a periodic point, then it has uniformly bounded deviations in the direction perpendicular to the segment.", "revisions": [ { "version": "v1", "updated": "2020-03-28T21:28:47.000Z" } ], "analyses": { "subjects": [ "37E30", "37E45" ], "keywords": [ "torus homeomorphisms", "sublinear diffusion", "inexistence", "rotation set", "direction perpendicular" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }