{ "id": "2003.12878", "version": "v1", "published": "2020-03-28T19:50:40.000Z", "updated": "2020-03-28T19:50:40.000Z", "title": "Regularity of Fourier integral operators with amplitudes in general Hörmander classes", "authors": [ "Alejandro J. Castro", "Anders Israelsson", "Wolfgang Staubach" ], "comment": "41 pages", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "We prove the global $L^p$-boundedness of Fourier integral operators that model the parametrices for hyperbolic partial differential equations, with amplitudes in classical H\\\"ormander classes $S^{m}_{\\rho, \\delta}(\\mathbb{R}^n)$ for parameters $0<\\rho\\leq 1$, $0\\leq \\delta<1$. We also consider the regularity of operators with amplitudes in the exotic class $S^{m}_{0, \\delta}(\\mathbb{R}^n)$, $0\\leq \\delta< 1$ and the forbidden class $S^{m}_{\\rho, 1}(\\mathbb{R}^n)$, $0\\leq\\rho\\leq 1.$ Furthermore we show that despite the failure of the $L^2$-boundedness of operators with amplitudes in the forbidden class $S^{0}_{1, 1}(\\mathbb{R}^n)$, the operators in question are bounded on Sobolev spaces $H^s(\\mathbb{R}^n)$ with $s>0.$ This result extends those of Y. Meyer and E. M. Stein to the setting of Fourier integral operators.", "revisions": [ { "version": "v1", "updated": "2020-03-28T19:50:40.000Z" } ], "analyses": { "subjects": [ "42B20", "47D06" ], "keywords": [ "fourier integral operators", "general hörmander classes", "amplitudes", "regularity", "hyperbolic partial differential equations" ], "note": { "typesetting": "TeX", "pages": 41, "language": "en", "license": "arXiv", "status": "editable" } } }