{ "id": "2003.12691", "version": "v1", "published": "2020-03-28T03:25:34.000Z", "updated": "2020-03-28T03:25:34.000Z", "title": "On the Ramsey number of a cycle and complete graphs", "authors": [ "Péter Madarasi" ], "categories": [ "math.CO" ], "abstract": "In this paper, we prove that the multicolored Ramsey number $R(G_1,\\dots,G_n,K_{n_1},\\dots,K_{n_r})$ is at least $(\\gamma-1)(\\kappa-1)+1$ for arbitrary connected graphs $G_1,\\dots,G_n$ and $n_1,\\dots,n_r\\in\\mathbb{N}$, where $\\gamma=R(G_1,\\dots,G_n)$ and $\\kappa=R(K_{n_1},\\dots,K_{n_r})$. Erd\\H{o}s at al. conjectured that $R(C_n,K_l)=(n-1)(l-1)+1$ for every $n\\geq l\\geq 3$ except for $n=l=3$. Nikiforov proved this conjecture for $n\\geq 4l+2$. Using the above bound, we derive the following generalization of this result. $R(C_n,K_{n_1},\\dots,K_{n_r})=(n-1)(\\kappa-1)+1$, where $\\kappa=R(K_{n_1},\\dots,K_{n_r})$ and $n\\geq 4\\kappa+2$.", "revisions": [ { "version": "v1", "updated": "2020-03-28T03:25:34.000Z" } ], "analyses": { "keywords": [ "complete graphs", "arbitrary connected graphs", "multicolored ramsey number", "conjecture" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }