{ "id": "2003.12549", "version": "v1", "published": "2020-03-27T17:31:58.000Z", "updated": "2020-03-27T17:31:58.000Z", "title": "Nearly invariant subspaces for operators in Hilbert spaces", "authors": [ "Yuxia Liang", "Jonathan R. Partington" ], "comment": "16 pages", "categories": [ "math.FA", "math.CV" ], "abstract": "For a shift operator $T$ with finite multiplicity acting on a separable infinite dimensional Hilbert space we represent its nearly $T^{-1}$ invariant subspaces in terms of invariant subspaces under the backward shift. Going further, given any finite Blaschke product $B$, we give a description of the nearly $T_{B}^{-1}$ invariant subspaces for the operator $T_B$ of multiplication by $B$ in a scale of Dirichlet-type spaces.", "revisions": [ { "version": "v1", "updated": "2020-03-27T17:31:58.000Z" } ], "analyses": { "subjects": [ "47B38", "47A15" ], "keywords": [ "invariant subspaces", "separable infinite dimensional hilbert space", "finite blaschke product", "finite multiplicity", "dirichlet-type spaces" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }