{ "id": "2003.12377", "version": "v1", "published": "2020-03-27T12:42:09.000Z", "updated": "2020-03-27T12:42:09.000Z", "title": "Some log and weak majorization inequalities in Euclidean Jordan algebras", "authors": [ "Jiyuan Tao", "Juyoung Jeong", "Muddappa Gowda" ], "comment": "18 pages", "categories": [ "math.FA" ], "abstract": "In the setting of Euclidean Jordan algebras, we prove majorization inequalities $\\lambda\\big (P_{\\sqrt{a}}(b)\\big )\\underset{log}{\\prec} \\lambda(a)*\\lambda(b)$ when $a,b\\geq 0$, $\\lambda\\big (|P_{a}(b)|\\big )\\underset{w}{\\prec} \\lambda(a^2)*\\lambda(|b|)$ and $\\lambda\\big (|a\\circ b|\\big )\\underset{w}{\\prec} \\lambda(|a|)*\\lambda(|b|)$ for all $a$ and $b$, where $P_u$ and $\\lambda(u)$ denote, respectively, the quadratic representation and the eigenvalue vector of an element $u$, and $*$ denotes the componentwise product. Extending the second inequality, we show that $\\lambda(|A\\bullet b|)\\underset{w}{\\prec} \\lambda({\\rm{diag}}(A))*\\lambda(|b|)$, where $A$ is a real symmetric positive semidefinite matrix and $A\\,\\bullet\\, b$ is the Schur product of $A$ and $b$. In the form of applications, we prove the generalized H\\\"{o}lder type inequality $||a\\circ b||_p\\leq ||a||_r\\,||b||_s$, where $p,q,r\\in [1,\\infty]$ with $\\frac{1}{p}=\\frac{1}{r}+\\frac{1}{s}$ and compute the norms of Lyapunov transformation $L_a$ and quadratic representation $P_a$ relative to spectral norms.", "revisions": [ { "version": "v1", "updated": "2020-03-27T12:42:09.000Z" } ], "analyses": { "subjects": [ "15A33", "17C20", "17C55" ], "keywords": [ "euclidean jordan algebras", "weak majorization inequalities", "real symmetric positive semidefinite matrix", "quadratic representation", "second inequality" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }