{ "id": "2003.10883", "version": "v1", "published": "2020-03-24T14:33:52.000Z", "updated": "2020-03-24T14:33:52.000Z", "title": "Some $q$-congruences arising from certain identities", "authors": [ "Chen Wang", "He-Xia Ni" ], "comment": "7 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "In this paper, by constructing some identities, we prove some $q$-analogues of some congruences. For example, for any odd integer $n>1$, we show that \\begin{gather*} \\sum_{k=0}^{n-1} \\frac{(q^{-1};q^2)_k}{(q;q)_k} q^k \\equiv (-1)^{(n+1)/2} q^{(n^2-1)/4} - (1+q)[n] \\pmod{\\Phi_n(q)^2},\\\\ \\sum_{k=0}^{n-1}\\frac{(q^3;q^2)_k}{(q;q)_k} q^k \\equiv (-1)^{(n+1)/2} q^{(n^2-9)/4} + \\frac{1+q}{q^2}[n]\\pmod{\\Phi_n(q)^2}, \\end{gather*} where the $q$-Pochhanmmer symbol is defined by $(x;q)_0=1$ and $(x;q)_k = (1-x)(1-xq)\\cdots(1-xq^{k-1})$ for $k\\geq1$, the $q$-integer is defined by $[n]=1+q+\\cdots+q^{n-1}$ and $\\Phi_n(q)$ is the $n$-th cyclotomic polynomial. The $q$-congruences above confirm some recent conjectures of Gu and Guo.", "revisions": [ { "version": "v1", "updated": "2020-03-24T14:33:52.000Z" } ], "analyses": { "keywords": [ "congruences arising", "identities", "th cyclotomic polynomial", "pochhanmmer symbol", "odd integer" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }