{ "id": "2003.10380", "version": "v1", "published": "2020-03-23T16:49:25.000Z", "updated": "2020-03-23T16:49:25.000Z", "title": "Elliptic Equations With Degenerate weights", "authors": [ "Anna Kh. Balci", "Lars Diening", "Raffaella Giova", "Antonia Passarelli di Napoli" ], "categories": [ "math.AP" ], "abstract": "We obtain new local Calderon-Zygmund estimates for elliptic equations with matrix-valued weights for linear as well as non-linear equations. We introduce a novel log-BMO condition on the weight M. In particular, we assume smallness of the logarithm of the matrix-valued weight in BMO. This allows to include degenerate, discontinuous weights. We provide examples that show the sharpness of the estimates in terms of the log-BMO-norm.", "revisions": [ { "version": "v1", "updated": "2020-03-23T16:49:25.000Z" } ], "analyses": { "subjects": [ "35B65", "35J70", "35R05" ], "keywords": [ "elliptic equations", "degenerate weights", "novel log-bmo condition", "local calderon-zygmund estimates", "matrix-valued weight" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }