{ "id": "2003.09849", "version": "v1", "published": "2020-03-22T10:06:10.000Z", "updated": "2020-03-22T10:06:10.000Z", "title": "Unique continuation for the gradient of eigenfunctions and Wegner estimates for random divergence-type operators", "authors": [ "Alexander Dicke", "Ivan Veselic" ], "comment": "25 pages", "categories": [ "math.FA", "math.AP", "math.SP" ], "abstract": "We prove a scale-free quantitative unique continuation estimate for the gradient of eigenfunctions of divergence-type operators, i.e. operators of the form $-\\mathrm{div}A\\nabla$, where the matrix function $A$ is uniformly elliptic. The proof uses a unique continuation principle for elliptic second order operators and a lower bound on the $L^2$-norm of the gradient of eigenfunctions corresponding to strictly positive eigenvalues. As an application, we prove an eigenvalue lifting estimate that allows us to prove a Wegner estimate for random divergence-type operators. Here our approach allows us to get rid of a restrictive covering condition that was essential in previous proofs of Wegner estimates for such models.", "revisions": [ { "version": "v1", "updated": "2020-03-22T10:06:10.000Z" } ], "analyses": { "subjects": [ "35J15", "47B80", "35R60", "35R45", "35P15" ], "keywords": [ "random divergence-type operators", "wegner estimate", "eigenfunctions", "elliptic second order operators", "scale-free quantitative unique continuation estimate" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }