{ "id": "2003.09457", "version": "v1", "published": "2020-03-20T18:52:02.000Z", "updated": "2020-03-20T18:52:02.000Z", "title": "Compactly supported $\\mathbb{A}^{1}$-Euler characteristic and the Hochschild complex", "authors": [ "Niny Arcila-Maya", "Candace Bethea", "Morgan Opie", "Kirsten Wickelgren", "Inna Zakharevich" ], "comment": "23 pages", "categories": [ "math.AG" ], "abstract": "We show the $\\mathbb{A}^{1}$-Euler characteristic of a smooth, projective scheme over a characteristic $0$ field is represented by its Hochschild complex together with a canonical bilinear form, and give an exposition of the compactly supported $\\mathbb{A}^{1}$-Euler characteristic $\\chi^{c}_{\\mathbb{A}^{1}}: K_0(\\mathbf{Var}_{k}) \\to \\text{GW}(k)$ from the Grothendieck group of varieties to the Grothendieck--Witt group of bilinear forms. We also provide example computations.", "revisions": [ { "version": "v1", "updated": "2020-03-20T18:52:02.000Z" } ], "analyses": { "subjects": [ "14F42", "19E15", "13D03", "55M05" ], "keywords": [ "euler characteristic", "hochschild complex", "grothendieck-witt group", "grothendieck group", "canonical bilinear form" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }