{ "id": "2003.09281", "version": "v1", "published": "2020-03-20T14:03:03.000Z", "updated": "2020-03-20T14:03:03.000Z", "title": "Non-asymptotic control of the cumulative distribution function of Lévy processes", "authors": [ "Céline Duval", "Ester Mariucci" ], "categories": [ "math.PR", "math.ST", "stat.TH" ], "abstract": "We propose non-asymptotic controls of the cumulative distribution function $P(|X_{t}|\\ge \\varepsilon)$, for any $t>0$, $\\varepsilon>0$ and any L\\'evy process $X$ such that its L\\'evy density is bounded from above by the density of an $\\alpha$-stable type L\\'evy process in a neighborhood of the origin. The results presented are non-asymptotic and optimal, they apply to a large class of L\\'evy processes.", "revisions": [ { "version": "v1", "updated": "2020-03-20T14:03:03.000Z" } ], "analyses": { "keywords": [ "cumulative distribution function", "non-asymptotic control", "lévy processes", "stable type levy process", "large class" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }