{ "id": "2003.08903", "version": "v1", "published": "2020-03-19T17:01:43.000Z", "updated": "2020-03-19T17:01:43.000Z", "title": "The $p$-Zassenhaus Filtration of a Free Profinite Group and Shuffle Relations", "authors": [ "Ido Efrat" ], "categories": [ "math.NT", "math.GR" ], "abstract": "For a prime number $p$ and a free profinite group $S$ on the basis $X$, let $S_{(n,p)}$, $n=1,2,\\ldots,$ be the $p$-Zassenhaus filtration of $S$. For $p>n$, we give a word-combinatorial description of the cohomology group $H^2(S/S_{(n,p)},\\mathbb{Z}/p)$ in terms of the shuffle algebra on $X$. We give a natural linear basis for this cohomology group, which is constructed by means of unitriangular representations arising from Lyndon words.", "revisions": [ { "version": "v1", "updated": "2020-03-19T17:01:43.000Z" } ], "analyses": { "subjects": [ "12G05", "68R15", "12F10", "12E30" ], "keywords": [ "free profinite group", "zassenhaus filtration", "shuffle relations", "cohomology group", "natural linear basis" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }