{ "id": "2003.08795", "version": "v1", "published": "2020-03-19T14:11:55.000Z", "updated": "2020-03-19T14:11:55.000Z", "title": "On Fano schemes of linear spaces of general complete intersections", "authors": [ "F. Bastianelli", "C. Ciliberto", "F. Flamini", "P. Supino" ], "comment": "4 pages, submitted pre-print. The authors thank Lawrence Ein for having ponited out the paper of Riedl and Yang [7] in our References", "categories": [ "math.AG" ], "abstract": "We consider the Fano scheme $F_k(X)$ of $k$--dimensional linear subspaces contained in a complete intersection $X \\subset \\mathbb{P}^n$ of multi--degree $\\underline{d} = (d_1, \\ldots, d_s)$. Our main result is an extension of a result of Riedl and Yang concerning Fano schemes of lines on very general hypersurfaces: we consider the case when $X$ is a very general complete intersection and $\\Pi_{i=1}^s d_i > 2$ and we find conditions on $n$, $\\underline{d}$ and $k$ under which $F_k(X)$ does not contain either rational or elliptic curves. At the end of the paper, we study the case $\\Pi_{i=1}^s d_i = 2$.", "revisions": [ { "version": "v1", "updated": "2020-03-19T14:11:55.000Z" } ], "analyses": { "subjects": [ "14M10", "14C05", "14M15", "14M20" ], "keywords": [ "general complete intersection", "linear spaces", "dimensional linear subspaces", "yang concerning fano schemes", "main result" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }