{ "id": "2003.08762", "version": "v1", "published": "2020-03-19T13:23:44.000Z", "updated": "2020-03-19T13:23:44.000Z", "title": "Prevalent uniqueness in ergodic optimisation", "authors": [ "Ian D. Morris" ], "categories": [ "math.DS" ], "abstract": "One of the fundamental results of ergodic optimisation asserts that for any dynamical system on a compact metric space $X$ and for any Banach space of continuous real-valued functions on $X$ which embeds densely in $C(X)$ there exists a residual set of functions in that Banach space for which the maximising measure is unique. We extend this result by showing that this residual set is additionally prevalent, answering a question of J. Bochi and Y. Zhang.", "revisions": [ { "version": "v1", "updated": "2020-03-19T13:23:44.000Z" } ], "analyses": { "keywords": [ "prevalent uniqueness", "residual set", "banach space", "ergodic optimisation asserts", "compact metric space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }