{ "id": "2003.07884", "version": "v1", "published": "2020-03-17T18:47:00.000Z", "updated": "2020-03-17T18:47:00.000Z", "title": "Lipschitz stability for an inverse source problem in anisotropic parabolic equations with dynamic boundary conditions", "authors": [ "E. M. Ait Ben Hassi", "S. E. Chorfi", "L. Maniar", "O. Oukdach" ], "categories": [ "math.AP" ], "abstract": "In this paper, we study an inverse problem for linear parabolic system with variable diffusion coefficients subject to dynamic boundary conditions. We prove a global Lipschitz stability for the inverse problem involving a simultaneous recovery of two source terms from a single measurement and interior observations, based on a recent Carleman estimate for such problems.", "revisions": [ { "version": "v1", "updated": "2020-03-17T18:47:00.000Z" } ], "analyses": { "subjects": [ "35R30", "35K05" ], "keywords": [ "dynamic boundary conditions", "inverse source problem", "anisotropic parabolic equations", "inverse problem", "linear parabolic system" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }