{ "id": "2003.07791", "version": "v1", "published": "2020-03-17T16:15:43.000Z", "updated": "2020-03-17T16:15:43.000Z", "title": "Twisted conjugacy in fundamental groups of geometric $3$-manifolds", "authors": [ "Daciberg Gonçalves", "Parameswaran Sankaran", "Peter Wong" ], "comment": "11 pages, no figures", "categories": [ "math.GR" ], "abstract": "A group $G$ has property $R_\\infty$ if for every $\\phi\\in Aut(G)$, there are an infinite number of $\\phi$-twisted conjugacy classes of elements in $G$. In this note, we determine the $R_\\infty$-property for $G=\\pi_1(M)$ for almost all geometric $3$-manifolds $M$. The only case that are left out are certain Sol manifolds which are torus bundles.", "revisions": [ { "version": "v1", "updated": "2020-03-17T16:15:43.000Z" } ], "analyses": { "subjects": [ "20E45", "20E36", "57M20", "55M20" ], "keywords": [ "fundamental groups", "torus bundles", "infinite number", "sol manifolds", "twisted conjugacy classes" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }